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Multivariate GARCH

• Many problems in finance are inherently multivariate and require us to
understand the dependence structure between assets.

• E.g.,

– portfolio analysis,
– volatility transmission: study of relations between the volatilities

and covariances/correlations of several markets (e.g., emerging and
developed markets, or different regions),

– relation between correlations and volatilities in different market regimes
(e.g., bull vs. bear markets),

– tests of asset pricing models,
– futures hedging.

• Multivariate GARCH: Models for the evolution of volatilities and
covariances/correlations.
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• Consider a return vector rt consisting of N components, i.e., rt =
[r1t, r2t, . . . , rNt]

′ (a column vector),

rt = µt + ϵt (1)

µt = E(rt|It−1) = Et−1(rt) (2)

ϵt|It−1 ∼ N(0,Ht) (3)

Ht = Var(rt|It−1) = Vart−1(rt) = Vart−1(ϵt), (4)

where It is the information available at time t, usually It = {rt, rt−1, . . .}.

• The error term
ϵt = [ϵ1t, ϵ2t, . . . , ϵNt]

′.

• Ht is the conditional covariance matrix of rt.
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• Covariance matrix

Ht =


h2
1t h12,t h13,t · · · h1N,t

h12,t h2
2t h23,t · · · h2N,t

h2
13,t h23,t h2

3,t · · · h3N,t
... ... ... . . . ...

h1N,t h2N,t h3N,t · · · h2
Nt

 , (5)

where
h2
jt = Vart−1(rjt), hij,t = Covt−1(rit, rjt), (6)

is symmetric and positive definite:

• We know that for any linear combination (with weight vector w =
[w1, w2, . . . , wN ]′) of the elements of rt,

1

0 < Vart−1

(∑
i

wirit

)
=
∑
i

w2
ih

2
i,t +

∑
i

∑
j ̸=i

wiwjhij,t = w′Htw.

1The variance may be zero if the components are linearly dependent.
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• For example, with N = 2,

Vart−1(w1r1t + w2r2t) = w2
1h

2
1t + 2w1w2h12,t + w2

2h
2
2t

=
[
w1 w2

] [ h2
1t h12,t

h12,t h2
2t

] [
w1

w2

]
.

• If the conditional distribution of rt is multivariate normal, then, for
example, the conditional 100×ξ% portfolio Value–at–Risk (VaR) for any
portfolio combination w can be calculated as

VaRt−1(ξ) = w′µt +Φ−1(ξ)
√
w′Htw, (7)

where Φ−1(ξ) is the ξ–quantile of the standard normal distribution, e.g.,
Φ−1(0.01) = −2.3263 and Φ−1(0.05) = −1.6449.
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• Similar to the univariate GARCH,

rt = µt + ϵt, ϵt = σtηt, ηt
iid∼ N(0, 1),

(3) is often written as

ϵt = H
1/2
t zt, zt

iid∼ N(0, I), (8)

where N(0, I) denotes the N–dimensional normal distribution with a
mean vector of zeros and identity covariance matrix, i.e., the N -
dimensional standard normal.

• H
1/2
t is an N ×N matrix such that H

1/2
t (H

1/2
t )′ = Ht (matrix square

root).

• As Ht is a covariance matrix, such a factorization exists, e.g., the
Cholesky decomposition.
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• A symmetric positive definite matrix A can be factored as A = LL′,
where L is lower triangular with positive diagonal elements (the Cholesky
factorization of A).2

• For example, if N = 2 (bivariate case), where

Ht =

[
h2
1t h12,t

h12,t h2
2t

]
,

the Cholesky factorization is

L =

[ √
h2
1t 0

h12,t/
√
h2
1t

√
h2
2,t − h2

12/h
2
1t

]
.

• LL′ = Ht is easily checked, and h2
2,t − h2

12/h
2
1t = (h2

1th
2
2,t − h2

12)/h
2
1t =

(detHt)/h
2
1t > 0 since Ht is positive definite.

2Other factorizations exist.
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• It then follows from (8) that

Vart−1(rt) = Vart−1(ϵt) (9)

= Et−1(ϵtϵ
′
t)− Et−1(ϵt)︸ ︷︷ ︸

=0

Et−1(ϵt)
′ (10)

= Et−1(H
1/2
t ztz

′
t(H

1/2
t )′) (11)

= H
1/2
t Et−1(ztz

′
t)︸ ︷︷ ︸

=identity matrix

(H
1/2
t )′ (12)

= H
1/2
t (H

1/2
t )′ = Ht. (13)
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Main Problems

• There are two main problems when it comes to the specification of
multivariate GARCH models:

(i) To keep estimation feasible, we need parsimonious models (i.e., models
with a moderate number of parameters) which are still flexible enough to
capture the most important aspects of the volatility/covariance dynamics.

(ii) We have to make sure that the conditional covariance matrix will remain
positive definite at each point of time.

• For the sake of illustration, consider a bivariate GARCH(1,1) of the
general vec–type.

• The covariance matrix is then given by

Ht =

[
h2
1t h12,t

h12,t h2
2t

]
,
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where, in the most general case

h2
1t = c1 + a11ϵ

2
1,t−1 + a12ϵ1,t−1ϵ2,t−1 + a13ϵ

2
2,t−1

+b11h
2
1,t−1 + b12h12,t−1 + b13h

2
2,t−1

h12,t = c2 + a21ϵ
2
1,t−1 + a22ϵ1,t−1ϵ2,t−1 + a23ϵ

2
2,t−1

+b21h
2
1,t−1 + b22h12,t−1 + b23h

2
2,t−1

h2
2t = c3 + a31ϵ

2
1,t−1 + a32ϵ1,t−1ϵ2,t−1 + a33ϵ

2
2,t−1

+b31h
2
1,t−1 + b32h12,t−1 + b33h

2
2,t−1,

or  h2
1,t

h12,t

h2
2,t


︸ ︷︷ ︸

=ht

=

 c1
c2
c3

+

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ϵ21,t−1

ϵ1,t−1ϵ2,t−1

ϵ22,t−1



+

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 h2
1,t−1

h12,t−1

h2
2,t−1

 .
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• In this specification, both conditional variances, h2
1t and h2

2t, and the
conditional covariance, h12,t, may depend on all lagged squared returns
and variances and all lagged cross–products ϵ1,t−1ϵ2,t−1 and covariances.

• Although flexible, this model is difficult to handle in practice, since it
requires estimation of 21 parameters (and this is for the bivariate case).

• Moreover, without further restrictions, there is no guarantee that the
sequence of covariance matrices implied by an estimated process will be
positive definite for all t.

• Such conditions are very tedious to work out and to impose in estimation.

• The system above is a bivariate version of the vec model, which is a
straightforward generalization of univariate GARCH.

• The general case is still useful, as it nests many more practicable
specifications.
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• The name derives from the fact that it uses the vech operator.

• As the N × N matrix Ht is symmetric, it contains only N(N + 1)/2
independent elements, which may be obtained, for example, by excluding
the upper triangular (redundant) part.

• The vech operator then stacks the remaining elements columnwise into
an N(N + 1)/2 column vector, e.g.,

vech

([
h2
1t h12,t

h12,t h2
2t

])
=

 h2
1t

h12,t

h2
2t


vech(ϵtϵ

′
t) = vech

([
ϵ1t
ϵ2t

] [
ϵ1t ϵ2t

])

= vech

([
ϵ21t ϵ1tϵ2t

ϵ1tϵ2t ϵ22t

])
=

 ϵ21t
ϵ1tϵ2t
ϵ22t

 .

• The vec operator is similar, but without excluding the upper triangular
part.
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• Then the vec(1,1) model can be written

ht = c+Aηt−1 +Bht−1, (14)

where

ht = vechHt (15)

ηt = vech(ϵtϵ
′
t). (16)

• Without restrictions, the are

– N(N + 1)/2 parameters in c
– N2(N + 1)2/4 parameters in A
– N2(N + 1)2/4 parameters in B.
– With N = 2, 3, 5, 10 assets, we have 21, 78, 465, 6105 parameters.
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Stationarity and Unconditional Variance

• The covariance stationarity for the vec(1,1) model (14),

ht = c+Aηt−1 +Bht−1, (17)

requires the eigenvalues of matrix

Q = A+B

to be inside the unit circle.

• If this holds, the unconditional covariance matrix (its vech) can be
obtained by taking expectations on both sides of (17),

E(ht) = c+AE(ηt−1) +BE(ht−1)

= c+AE(ht−1) +BE(ht−1)

= c+ (A+B)E(ht),
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hence
E(vechHt) = E(ht) = (I −A−B)

−1
c.

• Covariance matrix forecasts:

ht+1 = c+Aηt +Bht

Et(ht+2) = c+AEtηt+1 +Bht+1 = c+ (A+B)ht+1

Et(ht+3) = c+AEtηt+2 +BEtht+2

= c+ (A+B)Etht+2 = c+ (A+B)c+ (A+B)2ht+1

...

Et(ht+τ) =
τ−2∑
i=0

(A+B)ic+ (A+B)τ−1ht+1

= E(ht) + (A+B)τ−1(ht+1 − E(ht)),

using
τ−2∑
i=0

(A+B)i = [I − (A+B)τ−1](I −A−B)−1.
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• Et(ht+τ) converges to the unconditional covariance matrix provided the
covariance stationarity condition is satisfied.

• Calculation of higher moments of the vec model is considerably more
involved than in the univariate GARCH model.3

3C. M. Hafner (2003): Fourth Moment Structure of Multivariate GARCH Models, Journal of Financial
Econometrics, 1, 26–54.
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Special Case I: Diagonal VEC

• To reduce the number of parameters, this restricts the matrices A and
B in (14) to be diagonal.

• This means that

– each variance h2
it depends only on its own past squared error ϵ2i,t−1

and its own lag (as in the univariate case)

h2
it = cii + aiiϵ

2
i,t−1 + biih

2
i,t−1, i = 1, . . . , N, (18)

– each covariance hij,t depends only on its own past cross–product of
errors ϵi,t−1ϵj,t−1 and its own lag,

hij,t = cij + aijϵi,t−1ϵj,t−1 + bijhij,t−1, i, j = 1, . . . , N. (19)

• Often this specification is sufficient to represent the dynamics of variances
and covariances.
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• However, it does not allow for volatility transmissions, so not suitable for
this kind of application.

• With N = 2, 3, 5, 10 assets, we have 9, 18, 45, 165 parameters.

• Even in the diagonal vec model, conditions for positive definiteness are
difficult to check and impose in estimation.

• Methods for doing so and applying the model to a large number of assets
are discussed in Ledoit et al. (2003).4 and Ding and Engle (2001).5

4O. Ledoit, P. Santa–Clara and M. Wolf, Flexible Multivariate GARCH Modeling with an Application to
International Stock Markets, Review of Economics and Statistics, 85, 735–747

5Cf. Z. Ding and R. F. Engle (2001): Large Scale Conditional Covariance Matrix Modeling, Estimation
and Testing, Academia Economic Papers, 29, 157–184.
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Special Case II: BEKK

• BEKK (Baba, Engle, Kraft, and Kroner) was suggested by Engle and
Kroner (1995).6

• This specifies, in its simplest form,

Ht = C̃⋆C̃⋆′ +A⋆ϵt−1ϵ
′
t−1A

⋆′ +B⋆Ht−1B
⋆′, (20)

where C̃ is a triangular matrix and A⋆ and B⋆ are N × N parameter
matrices.

• This guarantees positive definiteness if the initialization of Ht is positive
definite.

• So the number of parameters is N(5N + 1)/2, i.e., for N = 2, 3, 5, 10
assets, we have 11, 24, 65, 255 parameters.
6Multivariate Simultaneous Generalized ARCH, Econometric Theory, 11, 122–150.
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• To see that this is a restricted vec model, consider the case N = 2,
where [

h2
1t h12,t

h12,t h2
2,t

]
=

[
c⋆11 0
c⋆21 c⋆22

] [
c⋆11 c⋆21
0 c⋆22

]
+

[
a⋆11 a⋆12
a⋆21 a⋆22

] [
ϵ21,t−1 ϵ1,t−1ϵ2,t−1

ϵ1,t−1ϵ2,t−1 ϵ22,t−1

] [
a⋆11 a⋆12
a⋆21 a⋆22

]′
+

[
b⋆11 b⋆12
b⋆21 b⋆22

] [
h2
1,t−1 h12,t−1

h12,t−1 h2
2,t−1

] [
b⋆11 b⋆12
b⋆21 b⋆22

]′
,

or

h2
1,t = c1 + a⋆211ϵ

2
1,t−1 + 2a⋆11a

⋆
12ϵ1,t−1ϵ2,t−1 + a⋆212ϵ

2
2,t−1

+b⋆211h
2
1,t−1 + 2b⋆11b

⋆
12h12,t−1 + b⋆212h

2
2,t−1

h12,t = c2 + a⋆11a
⋆
21ϵ

2
1,t−1 + (a⋆11a

⋆
22 + a⋆21a

⋆
12)ϵ1,t−1ϵ2,t−1 + a⋆22a

⋆
12ϵ

2
2,t−1

+b⋆11b
⋆
21h

2
1,t−1 + (b⋆11b

⋆
22 + b⋆12b

⋆
21)h12,t−1 + b⋆22b

⋆
12h

2
2,t−1.
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• For the general relation between the models, the Kronecker product ⊗
turns out to be useful.

• For an m × n matrix A and an p × q matrix B, this is defined as the
mp× nq matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
... ... . . . ...

am1B am2B · · · amnB

 .

• Important rule in time series analysis:

vec(ABC) = (C ′ ⊗A)vec(B).

• Then (20) can be written as

vec(Ht) = vec(C̃⋆C̃⋆′)+(A⋆⊗A⋆)vec(ϵt−1ϵ
′
t−1)+(B⋆⊗B⋆)vec(Ht−1).

(21)

20



• Representation (21) directly leads to stationarity conditions and
covariance matrix forecasts for the BEKK model. E.g., covariance
stationarity requires the eigenvalues of

A⋆ ⊗A⋆ +B⋆ ⊗B⋆ (22)

to be smaller than one in magnitude.

• In practice, the diagonal BEKK model is sometimes used to further
reduce the number of parameters to be estimated, where the parameter
matrices A⋆ and B⋆ are diagonal.
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Factor Models

• Basic idea: Co–movements of returns are driven by a small number of
(observable or unobservable) common underlying variables, which are
called factors.

• For example, as an observable factor, the return of a market index may
be used as a proxy for the general tendency of the stock market.

• Consider the simplest case of just a single observable factor.

• Think of this as the market return, denoted by rMt.

• In portfolio analysis, where factor models are often used to structure
covariance matrices, the model is also known as single index model
(SIM).
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• The return of asset i, i = 1, . . . , N , is described by

rit = αi + βirMt + ϵit, i = 1, . . . , N ; (23)

E(ϵit) = 0, Vart−1(ϵit) = σ2
ϵi
, i = 1, . . . , N ; (24)

Covt−1(ϵit, ϵjt) = 0, i ̸= j. (25)

• Expected return and variance of the market return will be denoted by
Et−1(rMt) = µMt and Vart−1(rMt) = σ2

Mt, and we assume

Covt−1(rMt, ϵit) = 0, i = 1, . . . , N. (26)

• This structure implies that

Et−1(rit) = αi + βiµMt, i =, . . . , N, (27)

Vart−1(rit) = β2
i σ

2
Mt + σ2

ϵi
, i = 1, . . . , N, (28)

Covt−1(rit, rjt) = βiβjσ
2
Mt, i, j = 1, . . . , N, i ̸= j. (29)
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• For the covariance structure of the returns, given by (29), Assumption
(25) is crucial, as it implies that the only reason for asset i and asset j
moving together is their joint dependence on the market return rMt.

• The first part of (28) is also often referred to as the systematic risk
(which is related to the general tendency of the market), whereas the
second part is the unsystematic (idiosyncratic, specific) risk, which is not
related to market factors.
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• In contrast to the market–related, systematic risk, the specific risk can
be diversified away.

• Consider an equally, weighted portfolio, i.e., a portfolio with weights
wi = 1/N , i = 1, . . . , N .

• Then the portfolio variance is, assuming the SIM correctly describes the
covariance structure,

σ2
pt =

1

N2

N∑
i=1

(β2
i σ

2
Mt + σ2

ϵi
) +

1

N2

N∑
i=1

∑
j ̸=i

βiβjσ
2
Mt

=

 1

N2

N∑
i=1

N∑
j=1

βiβj

σ2
Mt +

1

N2

N∑
i=1

σ2
ϵi

=

(
1

N

N∑
i=1

βi

)2

σ2
Mt +

1

N2

N∑
i=1

σ2
ϵi
.
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• Now
1

N2

N∑
i=1

σ2
ϵi
≤

max{σ2
ϵ1
, . . . , σ2

ϵN
}

N

N→∞−→ 0,

provided the variances of the unsystematic risks are bounded.

• Hence, for large N ,

σ2
pt ≈

(
1

N

N∑
i=1

βi

)2

σ2
Mt = β

2

pσ
2
Mt,

where

βp =
1

N

N∑
i=1

βi

is the portfolio’s β.

• That is, the market risk cannot be diversified away.
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• The conditional variance of the market factor can be modeled by means
of a univariate (asymmetric) (E)GARCH model, e.g.,

σ2
Mt = c+ aϵ2M,t−1 + bσ2

M,t−1, (30)

where
ϵMt = rMt − µMt. (31)

• Equation (28) implies that the GARCH effects in the market will be
transferred to all the assets’ variances.
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• Defining

β =


β1

β2
...

βN

 , Σϵ =


σ2
ϵ1

0 · · · 0
0 σ2

ϵ2
· · · 0

... ... . . . ...
0 0 · · · σ2

ϵN

 ,

the conditional covariance matrix of the N–dimensional rt =
[r1t, r2t, . . . , rNt]

′ can be written as

Covt−1(rt) =


β2
1σ

2
Mt + σ2

ϵ1
β1β2σ

2
Mt · · · β1βNσ2

Mt

β1β2σ
2
Mt β2

2σ
2
Mt + σ2

ϵ2
· · · β2βNσMt

... ... . . . ...
β1βNσ2

Mt β2βNσ2
Mt · · · β2

Nσ2
Mt + σ2

ϵN


= ββ′σ2

Mt +Σϵ.
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• The single factor model can be written as

rt = α+ βft + ϵt,

where ft is the factor.

• In the k–factor case, f t = [f1t, f2t, . . . , fkt]
′, and

rt = α+Bf t + ϵt,

where B is a N × k matrix of factor loadings.

• The conditional covariance matrix of the return vector is

Covt−1(rt) = BΣftB
′ +Σϵ,

where Σft is the conditional covariance matrix of the risk factors, which
may be specified as a low–dimensional multivariate GARCH process.

• The BEKK or diagonal vec may be appropriate in this framework.
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Modeling Conditional Correlations

• The models considered so far specified models for the conditional
covariances, in addition to the variances.

• Another approach is to model the variances and the conditional
correlations.

• One advantage is that conditional variances (or standard deviations) and
conditional correlations can be modeled separately, which often allows for
consistent two–step model estimation, thus reducing the computational
burden.

• For these models, we write Ht as

Ht = DtRtDt (32)

Dt =


√
h2
1t 0 · · · 0

0
√
h2
2t · · · 0

... ... . . . ...

0 0 · · ·
√

h2
Nt

 , (33)
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i.e., Ht is a diagonal matrix with the conditional standard deviations on
its main diagonal, and

Rt =


1 ρ12,t · · · ρ1N,t

ρ12,t 1 · · · ρ2N,t
... ... . . . ...

ρ1N,t ρ2N,t · · · 1

 (34)

is the conditional correlation matrix, i.e.,

ρij,t = Corrt−1(ϵit, ϵjt), i, j = 1, . . . , N, i ̸= j,

is the conditional correlation between assets i and j.

• The conditional covariances are

hij,t = ρij,t

√
h2
ith

2
jt, i ̸= j.

• Positive definiteness of Ht follows from that of Rt and the positivity of
the conditional standard deviations in Dt.
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Constant Conditional Correlations (CCC)

• One of the first multivariate GARCH models (Bollerslev, 1990).7

• In this model Rt = R is constant in (32), i.e., the conditional correlations
are constant.

• We may write this as
ϵt = Dtzt, (35)

where {(z1t, . . . , zNt)
′} is an iid series of (e.g., normally distributed)

innovations with mean zero and covariance matrix R, i.e.,

zt ∼ N(0, R). (36)

• For some time, this has been the most popular multivariate GARCH
model due to the fact that it can easily be estimated even for high–
dimensional time series.
7Modelling the coherence in short–run nominal exchange rates: a multivariate generalized ARCH model,

Review of Economics and Statistics, 73, 498–505.
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• Note that R is the constant conditional correlation matrix (i.e., the
correlation matrix of the innovations), not the unconditional correlation
matrix of the returns.

• Consistent two–step estimation for high–dimensional time series feasible:

• First estimate univariate GARCH models for each series.

• This allows for flexible specification of the univariate processes. For
example, we may specify a standard GARCH for one component,
AGARCH or EGARCH for another...

• Calculate the standardized residuals,

ẑit =
ϵit√
ĥ2
it

, i = 1, . . . , N, t = 1, . . . , T. (37)

• Then, in view of (35), estimate R as the correlation matrix of the
standardized residuals (37).
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Dynamic Conditional Correlation (DCC) Models

• The two–step estimation procedure makes application of the CCC
to high–dimensional systems feasible, but more often than not the
hypothesis of constant conditional correlations is rejected.

• For example, it is often observed that correlations between financial time
series increase in turbulent periods, and are very high in crash situations.

• Thus models for dynamic conditional correlations (DCC) have been
proposed.

• As an example, consider the model proposed by Engle (2002).8

8Dynamic conditional correlation—a simple class of multivariate GARCH model, Journal of Business and
Economic Statistics, 20, 339–350. A similar model was suggested by Y. K. Tse and A. K. C. Tsui (2002): A
multivariate GARCH model with time–varying correlations, Journal of Business and Economic Statistics, 20,
351–362.
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• In its simplest (scalar) form, this can be written as

ϵt ∼ N(0, DtRtDt), (38)

Dt ∼ GARCH (39)

zt = D−1ϵt (produces standardized residuals (37))

Qt = (1− a− b)S + azt−1z
′
t−1 + bQt−1, (40)

a, b ≥ 0, a+ b < 1,

Rt = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2. (41)

• In (40), S is the unconditional correlation matrix of the standardizes
residuals zt.

• If the starting value for Qt in (40) is positive definite, then Qt is positive
definite, but will not in general be a valid correlation matrix (i.e., with
ones on the diagonal).

• Thus, the rescaling in (41) is necessary.

35


